extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C22×Q8) = C22×C4.Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.1(C2^2xQ8) | 128,1639 |
C4.2(C22×Q8) = C22×C2.D8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.2(C2^2xQ8) | 128,1640 |
C4.3(C22×Q8) = C2×C23.25D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.3(C2^2xQ8) | 128,1641 |
C4.4(C22×Q8) = C2×M4(2)⋊C4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.4(C2^2xQ8) | 128,1642 |
C4.5(C22×Q8) = C24.100D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.5(C2^2xQ8) | 128,1643 |
C4.6(C22×Q8) = C4○D4.7Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.6(C2^2xQ8) | 128,1644 |
C4.7(C22×Q8) = C4○D4.8Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.7(C2^2xQ8) | 128,1645 |
C4.8(C22×Q8) = C2×C8⋊3Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.8(C2^2xQ8) | 128,1889 |
C4.9(C22×Q8) = C2×C8.5Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.9(C2^2xQ8) | 128,1890 |
C4.10(C22×Q8) = C2×C8⋊2Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.10(C2^2xQ8) | 128,1891 |
C4.11(C22×Q8) = C42.364D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.11(C2^2xQ8) | 128,1892 |
C4.12(C22×Q8) = C2×C8⋊Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.12(C2^2xQ8) | 128,1893 |
C4.13(C22×Q8) = C42.252D4 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.13(C2^2xQ8) | 128,1894 |
C4.14(C22×Q8) = M4(2)⋊3Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.14(C2^2xQ8) | 128,1895 |
C4.15(C22×Q8) = M4(2)⋊4Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.15(C2^2xQ8) | 128,1896 |
C4.16(C22×Q8) = M4(2)⋊5Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.16(C2^2xQ8) | 128,1897 |
C4.17(C22×Q8) = M4(2)⋊6Q8 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.17(C2^2xQ8) | 128,1898 |
C4.18(C22×Q8) = C22×C42.C2 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 128 | | C4.18(C2^2xQ8) | 128,2169 |
C4.19(C22×Q8) = C2×C23.41C23 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 64 | | C4.19(C2^2xQ8) | 128,2189 |
C4.20(C22×Q8) = C22.47C25 | φ: C22×Q8/C22×C4 → C2 ⊆ Aut C4 | 32 | | C4.20(C2^2xQ8) | 128,2190 |
C4.21(C22×Q8) = C2×D4⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.21(C2^2xQ8) | 128,1802 |
C4.22(C22×Q8) = C2×D4⋊2Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.22(C2^2xQ8) | 128,1803 |
C4.23(C22×Q8) = C2×D4.Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.23(C2^2xQ8) | 128,1804 |
C4.24(C22×Q8) = C2×Q8⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.24(C2^2xQ8) | 128,1805 |
C4.25(C22×Q8) = C2×C4.Q16 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.25(C2^2xQ8) | 128,1806 |
C4.26(C22×Q8) = C2×Q8.Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.26(C2^2xQ8) | 128,1807 |
C4.27(C22×Q8) = C42.447D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.27(C2^2xQ8) | 128,1808 |
C4.28(C22×Q8) = C42.219D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 32 | | C4.28(C2^2xQ8) | 128,1809 |
C4.29(C22×Q8) = C42.220D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.29(C2^2xQ8) | 128,1810 |
C4.30(C22×Q8) = C42.448D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.30(C2^2xQ8) | 128,1811 |
C4.31(C22×Q8) = C42.449D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.31(C2^2xQ8) | 128,1812 |
C4.32(C22×Q8) = C42.20C23 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 32 | | C4.32(C2^2xQ8) | 128,1813 |
C4.33(C22×Q8) = C42.21C23 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.33(C2^2xQ8) | 128,1814 |
C4.34(C22×Q8) = C42.22C23 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.34(C2^2xQ8) | 128,1815 |
C4.35(C22×Q8) = C42.23C23 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.35(C2^2xQ8) | 128,1816 |
C4.36(C22×Q8) = Q8×D8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.36(C2^2xQ8) | 128,2110 |
C4.37(C22×Q8) = Q8×SD16 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.37(C2^2xQ8) | 128,2111 |
C4.38(C22×Q8) = D8⋊6Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.38(C2^2xQ8) | 128,2112 |
C4.39(C22×Q8) = SD16⋊4Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.39(C2^2xQ8) | 128,2113 |
C4.40(C22×Q8) = Q8×Q16 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.40(C2^2xQ8) | 128,2114 |
C4.41(C22×Q8) = Q16⋊6Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.41(C2^2xQ8) | 128,2115 |
C4.42(C22×Q8) = D8⋊4Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.42(C2^2xQ8) | 128,2116 |
C4.43(C22×Q8) = SD16⋊Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.43(C2^2xQ8) | 128,2117 |
C4.44(C22×Q8) = SD16⋊2Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.44(C2^2xQ8) | 128,2118 |
C4.45(C22×Q8) = Q16⋊4Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.45(C2^2xQ8) | 128,2119 |
C4.46(C22×Q8) = SD16⋊3Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.46(C2^2xQ8) | 128,2120 |
C4.47(C22×Q8) = D8⋊5Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.47(C2^2xQ8) | 128,2121 |
C4.48(C22×Q8) = Q16⋊5Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.48(C2^2xQ8) | 128,2122 |
C4.49(C22×Q8) = C2×D4⋊3Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.49(C2^2xQ8) | 128,2204 |
C4.50(C22×Q8) = C2×Q8⋊3Q8 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.50(C2^2xQ8) | 128,2208 |
C4.51(C22×Q8) = C2×Q82 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 128 | | C4.51(C2^2xQ8) | 128,2209 |
C4.52(C22×Q8) = Q8×C4○D4 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.52(C2^2xQ8) | 128,2210 |
C4.53(C22×Q8) = C22.90C25 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 32 | | C4.53(C2^2xQ8) | 128,2233 |
C4.54(C22×Q8) = C22.91C25 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.54(C2^2xQ8) | 128,2234 |
C4.55(C22×Q8) = C22.92C25 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.55(C2^2xQ8) | 128,2235 |
C4.56(C22×Q8) = C22.93C25 | φ: C22×Q8/C2×Q8 → C2 ⊆ Aut C4 | 64 | | C4.56(C2^2xQ8) | 128,2236 |
C4.57(C22×Q8) = C22×C4⋊C8 | central extension (φ=1) | 128 | | C4.57(C2^2xQ8) | 128,1634 |
C4.58(C22×Q8) = C2×C4⋊M4(2) | central extension (φ=1) | 64 | | C4.58(C2^2xQ8) | 128,1635 |
C4.59(C22×Q8) = C2×C42.6C22 | central extension (φ=1) | 64 | | C4.59(C2^2xQ8) | 128,1636 |
C4.60(C22×Q8) = C42.257C23 | central extension (φ=1) | 32 | | C4.60(C2^2xQ8) | 128,1637 |
C4.61(C22×Q8) = C42.674C23 | central extension (φ=1) | 64 | | C4.61(C2^2xQ8) | 128,1638 |
C4.62(C22×Q8) = Q8×C2×C8 | central extension (φ=1) | 128 | | C4.62(C2^2xQ8) | 128,1690 |
C4.63(C22×Q8) = C2×C8⋊4Q8 | central extension (φ=1) | 128 | | C4.63(C2^2xQ8) | 128,1691 |
C4.64(C22×Q8) = C42.286C23 | central extension (φ=1) | 64 | | C4.64(C2^2xQ8) | 128,1692 |
C4.65(C22×Q8) = C42.287C23 | central extension (φ=1) | 64 | | C4.65(C2^2xQ8) | 128,1693 |
C4.66(C22×Q8) = M4(2)⋊9Q8 | central extension (φ=1) | 64 | | C4.66(C2^2xQ8) | 128,1694 |
C4.67(C22×Q8) = Q8×M4(2) | central extension (φ=1) | 64 | | C4.67(C2^2xQ8) | 128,1695 |
C4.68(C22×Q8) = C2×C23.37C23 | central extension (φ=1) | 64 | | C4.68(C2^2xQ8) | 128,2175 |